

Date: 01-01-2021

Re: House Sample

Please find attached Rational Design Report demonstrating compliance with SANS 10400XA.

The report indicates that the design in the report attached will bring the building into compliance via the Reference Building Method.

The energy modeling conducted shows that the building will theoretically use less energy and have a lower energy demand than an equivalent building meeting the Prescriptive Requirements as per SANS 10400 XA.

Note: This report is for information only and example of a Rational Design Report

Introduction

It is required that an Energy Modeling and a Rational Design is performed in order to evidence that the Proposed design has a lower theoretical energy usage and demand that the reference building designed in accordance with the prescriptive route.

In accordance with the National Building Regulation XA3 C) the building deemed to be complied with by means of the Reference Building Route if the above is demonstrated.

Compliance methodology of Rational Design

The compliance route selected is that set out in paragraph 4.2.1. c) of SANS 10400XA which is described in Annexure A.

The energy modeling software description and certification is provided in Annexure A. Details of the competency requirements of the rational designer are provided in Annexure A. Disclaimer for the use of this report Annexure A.

Detailed building input and assumptions are stipulated in Annexure B, with a description of the Rational Design essentials necessary to ensure the required energy savings are achieved. Relevant energy usage, demand outputs and modeling results are provided in Annexure C.

Summary of Rational Design results

Conclusions

House Sample will theoretically preform with a lower annual energy usage and energy demand than a comparable building built and designed in accordance with the prescriptive rules of Regulations XA, and therefor meets the requirements of the National Building Regulations.

Annexure A

Compliance Route

The paragraph 4.2.1 c) or Reference Building compliance route requires that an energy modelling of the base case design of the house is performed with all Prescriptive provisions as per paragraph 4.2.1 b) applied and using Agrément SA approved software, in order to determine the base-line energy usage and demand.

The design is then adjusted to bring about improvements in the energy efficiency, and is remodeled until a lower energy usage is demonstrated. The assumptions of paragraph 4.3 and all the modelling stipulations of SANS10400XA Table 4, 5, and 6 are applied.

Bsimac software

This Rational Design has been developed by making use of the Bsimac Ver9 Software package. The Bsimac software has been evaluated and approved by Agrément SA (a division of the CSIR) in accordance with the protocols developed for Energy Modelling software in terms of SANS104000XA. The climate files used in this modelling are the Test Reference Year (TRY) files supplied with the software.

Disclaimer

RigiFoam (Pty) Ltd has provided this Rational Assessment Calculation in terms of SANS10400XA, which calculation incorporates the specific use of RigiFoam's LAMBDABOARD product in the manner, application, and thickness described. It is recorded that the use of any other product, or deviation in any way whatsoever from the details described in this calculation, shall render the calculation entirely inaccurate and as such RigiFoam does not warrant the correctness in such circumstance, nor shall RigiFoam bear any responsibility or liability in respect thereof.

Annexure B

General Specifications

House Sample consisting of a 2 Bedroom Double Storey residential dwelling. Garage excluded from simulations

Modeling methodology

As per the requirements set out in SANS 10400-XA, two simulations were conducted for the building.

The first simulation is of a 'Reference Building' based on the same design, but with prescribed specifications for windows, fabric and insulation, etc. (detailed below) as per SANS 10400-XA. This simulation shows the 'reference' energy consumption and demand which this building might consume.

The second simulation is of the actual design, with actual specifications of windows, fabric and insulation used. This simulation shows the actual predicted energy consumption and demand for the building.

The results show that the Rational Design has a theoretical annual energy consumption and demand equal than or less the Reference Building Complying with clause 4.2.1 b) of SANS 10400-XA, thus proving compliance with the SANS-10400-XA standard.

51	mulation inputs	
	Reference Building	Rational Design Building
Climatic	Climate Zone 4 Temperate coastal	
Zone	Weather Data approved by Agrément S	SA
Perimeter /	As per SANS 10400-XA & SANS 204	As per Actual designs/suggestions
Floors	 Uninsulated floor slab - no 	Uninsulated floor slab - no underfloor
	underfloor heating	heating
	Vertical Edge Perimeter insulation	• 25mm Lambdaboard Vertical Edge
	required for floor area's less than	Perimeter insulation, installed as per
	500m ² with min R-Value of 1.	manufacture's specifications
External	As per SANS 10400-XA	As per Actual designs/suggestions
Walls	 Masonry Walls with min R-Value 	• All external cavity as per Design
	0.35	Architect's Council Drawings
Roof	As per SANS 10400-XA	As per Actual designs/suggestions
Assemblies	Roof assemblies to achieve a	Concrete roof tiles 50mm
	minimum R-value of 3.7 for Climate	Lambdaboard installed as ceiling
	Zone 4.	application installed as per
		manufacturer's specifications
Fenestration	As per SANS 10400-XA	As per Actual designs/suggestions
	• Fenestration area maximum 15% of	Double Glazing as
	Net Floor Area With minimum	per Architect's'
	energy performance requirements	window and door
	Single Clear Glazing as per SAN204.	schedule.

Shading	• Solar exposure factors used, assuming no shading for reference building	 Shading measures provided as per architect's design
Heating and	As per SANS 10400-XA and SANS 204	
Cooling	Building modelled theoretically as if cooled	d with an air-conditioning system of efficiency in
	terms of SANS 204 Table 14 to determine a	an energy budget.
Design	2 persons per bedroom as per SANS 10400-	·XA
Population		
Metabolic	75 W sensible heat gain per person as per S	SANS 10400-XA
Rates		
Lighting	5 W / m ² as per SANS 10400-XA and SANS 2	04
Hot Water	As per SANS 10400-XA and SANS 204	As per Actual designs
Service	• 50% volume supplied by gas/heat	Gas Geyser Specified as per Design
	pump/solar thermal estimated at	Architect's Council Drawings.
	115l/capita/day over the total	
	occupancy.	

Annexure C

Energy Modeling Results The Bsimac computer runs are set out below:

Reference Building

Energy consumption for all Plants for the whole Year (or period computed)

	Energy consumption for the period indicated	
Category	Per sq metre, kWh/m²	Total, kWh
Cooling, Dehumidifying	47.5	5 870
Heating	9.3	1 146
Humidifying	j <u>0</u> .0 j	0
Sub-Total	56.8	7 015
Fans and pumps	5.0	<mark>617</mark>
TOTAL	61.7	7 632
Lights: electrical input	50.9	6 289
Hot water	44.9	5 548
Vertical transport	j 0.0 j	0
GRAND TOTAL	157.5	19 470

** Based on the 'Nett Floor Area' of 123.6 m².

	Electrical demand for the period indicated	
Month	Per sq metre**, VA/m²	Total, kVA
January	49.2	6.1
February	50.3	6.2
March	49.2	6.1
April	49.3	6.1
May	36.9	4.6
June	43.1	5.3
July	42.3	5.2
August	38.2	4.7
September	46.2	5.7
October	44.6	5.5
November	45.6	5.6
December	j 47.4	5.9
Average for the year	45.2	5.6

** Based on the 'Nett Floor Area' of 123.6 m².

Rational Design Building

	Energy consumption for the period indicated	
Category	Per sq metre, kWh/m²	Total, kWh
Cooling, Dehumidifying Heating Humidifying	64.8 0.5 0.0	8 016 63 0
Sub-Total	65.4	8 079
Fans and pumps	7.0	862
TOTAL	72.3	8 942
Lights: electrical input Hot water Vertical transport	50.9 6.1 0.0	6 289 751 0
GRAND TOTAL	129.3	15 982

Energy consumption for all Plants for the whole Year (or period computed)

** Based on the 'Nett Floor Area' of 123.6 m².

	Electrical demand for the period indicated		
Month	Per sq metre**, VA/m²	Total, kVA	
January	35.2	4.3	
February	35.9	j 4.4	
March	36.4	i 4.5	
April	36.5	4.5	
May	22.9	2.8	
June	17.2	2.1	
July	17.4	i 2.1	
August	23.6	2.9	
September	30.8	3.8	
October	32.5	i 4.0	
November	33.8	4.2	
December	34.0	j 4.2	
Average for the year	29.7	3.7	

** Based on the 'Nett Floor Area' of 123.6 m².

